When to Use What Is Plastic Technology?

Author: Evelyn

Feb. 04, 2024

217

0

0

Tags: Machinery

Design and manufacture of plastic products

Plastics engineering encompasses the processing, design, development, and manufacture of plastics products. A plastic is a polymeric material that is in a semi-liquid state, having the property of plasticity and exhibiting flow. Plastics engineering encompasses plastics material and plastic machinery. Plastic machinery is the general term for all types of machinery and devices used in the plastics processing industry.[1] The nature of plastic materials poses unique challenges to an engineer. Mechanical properties of plastics are often difficult to quantify, and the plastics engineer has to design a product that meets certain specifications while keeping costs to a minimum. Other properties that the plastics engineer has to address include: outdoor weatherability, thermal properties such as upper use temperature, electrical properties, barrier properties, and resistance to chemical attack.

In plastics engineering, as in most engineering disciplines, the economics of a product plays an important role. The cost of plastic materials ranges from the cheapest commodity plastics used in mass-produced consumer products to very expensive, specialty plastics. The cost of a plastic product is measured in different ways, and the absolute cost of a plastic material is difficult to ascertain. Cost is often measured in price per pound of material, or price per unit volume of material. In many cases, however, it is important for a product to meet certain specifications, and cost could then be measured in price per unit of a property. Price with respect to processibility is often important, as some materials need to be processed at very high temperatures, increasing the amount of cooling time a part needs. In a large production run, cooling time is very expensive.

Some plastics are manufactured from recycled materials but their use in engineering tends to be limited because the consistency of formulation and their physical properties tend to be less consistent. Electrical, electronic equipment, and motor vehicle markets together accounted for 58 percent of engineered plastics demand in 2003.[2] Engineered plastics demand in the US was estimated at $9,702 million in 2007.

A big challenge for plastics engineers is the reduction of the ecological footprints of their products. First attempts like the Vinyloop process can guarantee that a product's primary energy demand is 46 percent lower than conventionally produced PVC. The global warming potential is 39 percent lower.[3]

Plastics engineering specialties

[

edit

]

See also

[

edit

]

References

[

edit

]

Additional resources:
Is plating solution hazardous waste?
What are the best things to electroplate?
Revolutionizing Jewellery Making with Acid Gold Plating: Why?
Revolutionizing Metal Coating: Should You Invest?
How do you manufacture protein bars?
How much does hot-dip galvanizing cost?
Ultimate Guide: How Surface Treatment Machines Solve Your Toughest Problems

Plastics are the most common materials for producing end-use parts and products, for everything from consumer products to medical devices. Plastics are a versatile category of materials, with thousands of polymer options, each with their own specific mechanical properties. But how are plastic parts made?

A variety of plastic manufacturing processes have been developed to cover a wide range of applications, part geometries, and types of plastics. For any designer and engineer working in product development, it is critical to be familiar with the manufacturing options available today and the new developments that signal how parts will be made tomorrow.

This guide provides an overview of the most common manufacturing processes for producing plastic parts and guidelines to help you select the best option for your application.

How to Choose the Right Plastic Manufacturing Process

Consider the following factors when selecting a manufacturing process for your product:

Form: Do your parts have complex internal features or tight tolerance requirements? Depending on the geometry of a design, manufacturing options may be limited, or they may require significant design for manufacturing (DFM) optimization to make them economical to produce.

Volume/cost: What’s the total or the annual volume of parts you’re planning to manufacture? Some manufacturing processes have high front costs for tooling and setup, but produce parts that are inexpensive on a per-part basis. In contrast, low volume manufacturing processes have low startup costs, but due to slower cycle times, less automation, and manual labor, cost per part remains constant or decreases only marginally when volume increases.

Lead time: How quickly do you need parts or finished goods produced? Some processes create first parts within 24 hours, while tooling and setup for certain high volume production processes takes months.

Material: What stresses and strains will your product need to stand up to? The optimal material for a given application is determined by a number of factors. Cost must be balanced against functional and aesthetic requirements. Consider the ideal characteristics for your specific application and contrast them with the available choices in a given manufacturing processes.

Download the high-resolution version of this infographic here.

Video Guide

How to Choose a 3D Printing Technology

Having trouble finding the best 3D printing technology for your needs? In this video guide, we compare FDM, SLA, and SLS technologies across popular buying considerations.

Watch the Videos

When to Use What Is Plastic Technology?

Guide to Manufacturing Processes for Plastics

Additional resources:
Ultimate guide to extruding machine: FAQs answered!
The Ultimate Guide to Barrel Nickel Plating
Revolutionize Your Pet Food Production with Big Capacity
Revolutionize Your Business With Continuous Electroplating Machines?
SMT AGV Equipment: Revolutionizing Manufacturing Processes
Choosing the Right Dog Food Machine for Your Pet
Exploring the Advantages of GFS Tanks with FRP Roof in Industrial Storage

Comments

Please Join Us to post.

0

0/2000

Related Articles

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us.

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)

0/2000